Malliavin Calculus and Decoupling Inequalities in Banach Spaces
نویسنده
چکیده
We develop a theory of Malliavin calculus for Banach space valued random variables. Using radonifying operators instead of symmetric tensor products we extend the Wiener-Itô isometry to Banach spaces. In the white noise case we obtain two sided L-estimates for multiple stochastic integrals in arbitrary Banach spaces. It is shown that the Malliavin derivative is bounded on vector-valued Wiener-Itô chaoses. Our main tools are decoupling inequalities for vector-valued random variables. In the opposite direction we use Meyer’s inequalities to give a new proof of a decoupling result for Gaussian chaoses in UMD Banach spaces.
منابع مشابه
Stochastic integration in UMD Banach spaces
In these lectures we shall present an introduction of the theory of stochastic integration in UMD Banach spaces and some of its applications. The Hilbert space approach to stochastic partial differential equations (SPDEs) was pioneered in the 1980s by Da Prato and Zabczyk. Under suitable Lipschitz conditions, mild solutions of semilinear SPDEs in Hilbert spaces can be obtained by solving a fixe...
متن کاملThe System of Vector Variational-like Inequalities with Weakly Relaxed ${eta_gamma-alpha_gamma}_{gamma inGamma}$ Pseudomonotone Mappings in Banach Spaces
In this paper, we introduce two concepts of weakly relaxed ${eta_gamma-alpha_gamma}_{gamma in Gamma}$ pseudomonotone and demipseudomonotone mappings in Banach spaces. Then we obtain some results of the solutions existence for a system of vector variational-like inequalities with weakly relaxed ${eta_gamma-alpha_gamma}_{gamma in Gamma}$ pseudomonotone and demipseudomonotone mappings in reflexive...
متن کاملAn L 2 theory for differential forms on path spaces I
An L2 theory of differential forms is proposed for the Banach manifold of continuous paths on Riemannian manifolds M furnished with its Brownian motion measure. Differentiation must be restricted to certain Hilbert space directions, the H-tangent vectors. To obtain a closed exterior differential operator the relevant spaces of differential forms, the H-forms, are perturbed by the curvature of M...
متن کاملar X iv : m at h / 06 12 41 6 v 1 [ m at h . PR ] 1 4 D ec 2 00 6 An L 2 theory for differential forms on path spaces I
An L theory of differential forms is proposed for the Banach manifold of continuous paths on Riemannian manifolds M furnished with its Brownian motion measure. Differentiation must be restricted to certain Hilbert space directions, the H-tangent vectors. To obtain a closed exterior differential operator the relevant spaces of differential forms, the H-forms, are perturbed by the curvature of M ...
متن کاملThe Metric Projection and Its Applications to Solving Variational Inequalities in Banach Spaces
In this paper, we study the properties of the metric projection operator (the nearest point projection operator) and its continuity. Then we use it to solve variational inequalities in general Banach spaces and to approximate the solutions in uniformly convex and uniformly smooth Banach spaces.
متن کامل